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1 Background

Mobile network providers typically offer their customers a variety of different data

plans. In this problem, we examine how different pricing methods affect the profit (利

润) in various scenarios.

Consider the following two pricing methods: volume-based pricing (按量收费) and

monthly subscription fee (包月收费). In the first method, the plan has a single parameter

R (RMB/GB), meaning that the customer will be charged R × D RMB if D GB are

used. In the second method, the plan has two parameters F (RMB/month) and C (GB),

meaning that the customer will be charged F RMB each month as long as no more than

C GB are used.

We assume the cost (成本) for providing data is negligible (可忽略), and so the profit

of the company is simply the total amount of money paid by all customers.

2 Customers with fixed demands and fixed budgets

In a market survey, we observe that there are N customers of the same type. They

all have the same monthly demands (需求) D GB and are willing to pay up to P RMB

for this service. Note that the customers will not pay anything if their demands cannot

be fulfilled within their budgets (预算).

Question 1 (10 pts): What are the maximum monthly profits for each of the pricing

methods, and the corresponding parameters R, F , C? Which pricing method is better

for the company?

Answer 1: The maximum profits are N × P RMB in both cases. The profit cannot be

higher as each customer are willing to pay at most P RMB and there are N of them.

For volume-based pricing, optimal R = P/D, so each customer pays P RMB.

For monthly subscription, optimal F = P and C ≥ D.
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Both pricing methods are equally good.

Suppose there are 2 types of customers instead. There are N low-end customers

and N high-end customers. The low-end customers are willing to pay P1 RMB for D1

GB/month, and the high-end customers are willing to pay P2 RMB for D2 GB/month.

We assume that P1 < P2 ≤ 2P1, D1 < D2, and P1/D1 < P2/D2 ≤ 2P1/D1.

Question 2 (10+10 pts): What is the profit using volume-based pricing with parameter

R? You can consider different ranges of R and give a formula for each of the cases.

What is the maximum profit and the corresponding R?

Answer 2: We consider the following three cases.

Case 1: 0 ≤ R ≤ P1/D1. The profit is R×N×(D1+D2). Maximized at R = P1/D1.

Case 2: P1/D1 < R ≤ P2/D2. The profit isR×N×D2. Maximized whenR = P2/D2.

Case 3: P2/D2 < R. The profit is 0.

So, if (P1/D1) × N × (D1 + D2) ≥ (P2/D2) × N × D2 = NP2, then the optimal

R = P1/D1 and the profit is NP1 + NP1D2/D1. Indeed, we have P1(1 + D2/D1) ≥
P1(1 + P2/(2P1)) = P1 + P2/2 ≥ P2.

Question 3 (10+5 pts): What is the maximum profit using monthly subscription fee,

and the corresponding parameters F , C?

Compared with the volume-based pricing in Question 2, which pricing method is

better for the company?

Answer 3: If we want to fulfill high-end customers only, the optimal (F,C) can be chosen

to be (P2, D2) as the most we can get from each of them is P2. The corresponding profit

is NP2.

If we want to fulfill all customers, the optimal (F,C) can be chosen to be (P1, D2)

and the corresponding profit is 2NP1.

Since 2P1 ≥ P2, the optimal (F,C) = (P1, D2) and the maximum profit is 2NP1.

Since D2/D1 > 1, NP1 + NP1D2/D1 > 2NP1 and hence volume-based pricing is

better than monthly subscription.

3 Customers with diminishing marginal utilities

In reality, customers often value (估值) the first few GBs higher than the rest, which

means they are willing to pay more for the 1st GB than the 100th GB. This effect is

called the law of diminishing marginal utilities (边际效用递减).
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We assume that a customer with maximum demand D GB is willing to pay D RMB

for the 1st GB, D − 1 RMB for the 2nd GB, D − 2 RMB for the 3rd and so on, until 1

RMB for the n-th GB. The total amount is thus the area of Figure 1. For simplicity, we

approximate (近似) the figure with a triangle, and hence the customer is willing to pay

the area of the trapezoid Dx− x2/2 RMB for x GBs when 0 ≤ x ≤ D, and D2/2 RMB

for more than D GB. Formally, when a customer uses x GBs, we define his valuation

function (估值函数) as

V (x) =

{
Dx− x2/2 if 0 ≤ x ≤ D,

D2/2 if x > D.

Note that now x can also be fractional (小数).

Figure 1: The customer values the first x GB at (2D − x)x/2 RMB.

The customer’s utility function (效用函数) is defined as his valuation function sub-

tracted by the amount he actually pays. In this scenario, the customer always chooses

the x that maximizes (最大化) his utility function. In case of tie (相同效用), we assume

the customer is willing to pay the most.

Suppose there are N customers with maximum demands D.

Question 4 (10+5 pts): What is the profit using volume-based pricing with parameter

R? Note that the customers may choose to use less than D GB because of the diminishing

utility.

What is the maximum profit and the corresponding R?

Answer 4: The utility of each customer for using x GB is Dx− x2/2−Rx for 0 ≤ x ≤ D

and 0 ≤ R ≤ D, and it maximizes when x = D − R. Hence the profit is R(D − R)N .

When R > D the profit is 0 as the customers have negative utility for using any data.

The maximum profit is D2N/4 at R = D/2.
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Question 5 (5+5 pts): What is the maximum profit using monthly subscription fee,

and the corresponding parameters F , C? Compared with the volume-based pricing in

Question 4, which pricing method is better for the company in this scenario?

Answer 5: The maximum profit is D2N/2 by setting (F,C) = (D2/2, D). The customers

have 0 utility using this plan and negative utility for any plan with higher subscription

fee.

The monthly subscription is always better in this scenario.

Suppose there are N customers with maximum demands D1 and N customers with

maximum demands D2. We assume that D1 < D2 ≤ 2D1.

Question 6 (10+5 pts): What is the profit using volume-based pricing with parameter

R?

What is the maximum profit and the corresponding R?

Answer 6: For 0 ≤ R ≤ D1, the profit is R × (D1 − R) × N + R × (D2 − R) × N . For

D1 < R ≤ D2, the profit is R× (D2 −R)×N . For D2 < R, the profit is 0.

Since the second case maximizes at R = D2/2 which is ≤ D1 by assumption, we

conclude that cases 2 and 3 are never optimal.

The function RN(D1−R+D2−R) maximizes at R = (D1+D2)/4 and the maximum

profit is (D1 +D2)
2N/8.

Question 7 (10+5 pts): What is the maximum profit using monthly subscription fee,

and the corresponding parameters F , C? Compared with the volume-based pricing in

Question 6, which pricing method is better for the company in this scenario?

Answer 7: If we want to fulfill high-end customers only, the optimal (F,C) can be chosen

to be (D2
2/2, D2) and the corresponding profit is ND2

2/2.

If we want to fulfill all customers, the optimal (F,C) can be chosen to be (D2
1/2, D2)

and the corresponding profit is ND2
1.

So, the maximum profit is max(ND2
2/2, ND2

1), with corresponding parameters (D2
2/2, D2)

and (D2
1/2, D2). Since max(ND2

2/2, ND2
1) ≥ ND2

2/2 ≥ N(D1 +D2)
2/8 as D2 > D1, we

conclude that monthly subscription is always better in this scenario.
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1 Background

Inventory management (库存管理) is the process of planning and controlling the

flow of goods in and out of a business. It helps to ensure that the business has enough

products to meet customer demand, while avoiding the waste and expense of overstocking

or understocking. Inventory management involves deciding when to order new products,

how many to order, and how to store them efficiently. Suppose you own a bookstore that

sells books, magazines, and stationery (文具). You want to keep track of how many items

you have in stock (存货), how much they cost, and how fast they sell. You also want to

avoid the problems of overstocking or understocking your products. If you store too few

products, you may run out of stock (缺货) and lose sales, profits, and competitive edge.

If you store too many products, you may waste money and space, and risk having unsold

or damaged goods.

One common inventory problem is how to replenish (补充) inventory when it is

depleted by customer demand. This problem can be modeled by assuming that the

demand rate (单位时间需求量) for a product is constant and known, denoted by R, and

that the product is ordered in batches. The costs involved in this problem are: (1). the

cost of holding each unit of product in inventory per unit time, C1; (2). the cost of

being unable to meet each unit of customer demand per unit time, C2; (3). the fixed

cost of placing an order for a batch of (一批) products, C3; (4). the cost of producing or

purchasing each unit of product, K.

The goal of inventory management is to find the best ordering policy that minimizes

the total cost per unit time, while satisfying customer demand. This policy specifies when

to order a new batch of products, and how many units to order each time.
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2 Inventory replenishment with zero shortage and

instant delivery

To simplify the problem, we first assume that we never run out of stock. In other

words, we set the shortage cost, C2, to be very high. We also assume that we can order a

batch of products and receive them instantly when our inventory level reaches zero. This

way, we can avoid any delays or uncertainties in the supply chain.

Let t be the time interval between two consecutive orders, and Q be the quantity of

products ordered each time. Figure 1 shows how the inventory level changes over time

under this policy. We start with an inventory level of zero, and order Q units at time

zero. Then, we sell the products at a constant rate of R units per unit time, until the

inventory level drops to zero again. At this point, we order another batch of Q units, and

repeat the cycle.

图 1: Inventory level over time when we order and receive products immediately.

We know the values of R, C1, C3 and K, which are the demand rate, the holding cost

per unit product per unit time, the fixed cost per order, and the unit cost per product,

respectively. Our goal is to find the optimal value of Q, which minimizes the total cost

per unit time.

To help you understand the notations more clearly, we give you an example of how to

calculate the total cost per cycle. The production or ordering cost per cycle is C3 +KQ.

The holding cost per cycle is C1Qt/2 = C1Q
2/2/R. Therefore, the total cost per cycle is
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C3 +KQ+ C1Q
2/2/R.

Question 1. What is the expression for the total cost per unit time, denoted by C(Q),

as a function of Q?

Answer 1: The total cost per unit time is

C(Q) =
C3 +KQ

t
+ C1Q/2 =

C3 +KQ

Q/R
+

C1Q

2
=

C3R

Q
+KR +

C1Q

2
.

Now we determine when and by how much to replenish inventory through minimizing

the total cost per unit time.

Question 2. What is the optimal value of Q, denoted by Q∗, that minimizes C(Q)?

What is the corresponding value of t, denoted by t∗?

Answer 2: The optimal value of Q is given by

Q∗ =

√
2C3R

C1

.

The corresponding t∗ is t∗ = Q∗/R =
√

2C3

C1R
.

3 Inventory replenishment with stockouts and back-

orders

Sometimes, it may be beneficial to allow some stockouts (缺货), or planned shortages,

in inventory management. This means that we are willing to accept a delay in fulfilling

some customer orders, if the holding cost of inventory (C1) is too high compared to the

shortage cost (C2). The shortage cost is the cost of losing customer satisfaction or loyalty

due to unavailability of products.

When we have stockouts, we keep track of the customer orders that are not met, and

we call them backorders. Backorders are orders that are placed by customers but cannot

be delivered immediately because the product is out of stock. The business promises to

deliver the product as soon as possible, but the customer has to wait until then. This

can affect the customer’s perception of the business and its service quality. We fill the

backorders as soon as we receive a new batch of products. In this case, the inventory

level over time looks like Figure 2. It shows that when the inventory level reaches zero,

we do not order immediately, but wait for some time, t1, until we order a batch of Q
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units. During this time, we accumulate backorders, which are filled when the new batch

arrives. Then we sell the remaining at a constant rate of R units per unit time. Note

that there is no holding cost during the period (0, t1).

图 2: Inventory level over time when we allow some stockouts and backorders.

We know the values of R, C1, C2, C3 and K, which are the demand rate, the holding

cost per unit product per unit time, the shortage cost per unit product per unit time,

the fixed cost per order, and the unit cost per product, respectively. Our goal is to find

the optimal values of t1 and Q, which minimize the total cost per unit time.

Question 3. What is the expression for the total cost per unit time, denoted by

C(t1, Q), as a function of t1 and Q?

Answer 3: The production or ordering cost per cycle C3 + KQ. The holding cost per

cycle is C1 ∗A/2 ∗ (t− t1) = C1 ∗R ∗ (t− t1)
2/2 = C1 ∗R ∗ (Q/R− t1)

2/2. The shortage

cost per cycle is C2 ∗B/2 ∗ t1 = C2 ∗R ∗ t21/2. Therefore, the total cost per unit time is

C(t1, Q) =
C3 +KQ

t
+

C1R(Q/R− t1)
2

2t
+

C2Rt21
2t

=
C3R

Q
+KR +

C1(Q− t1R)2

2Q
+

C2R
2t21

2Q
.

Now we minimize the total cost per unit time to determine when and by how much

to replenish inventory.
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Question 4. For each fixed Q, what is the optimal value of t1, denoted by t∗1(Q), that

minimizes C(t1, Q)?

Answer 4: For each Q, the optimal t1 is given by

t∗1(Q) =
C1Q

(C1 + C2)R
.

Question 5. What are the optimal values of t1 and Q, denoted by t∗ and Q∗, that

minimize C(t1, Q)?

Answer 5: Substituting t∗1(Q) = C1Q
(C1+C2)R

into C(t∗1(Q), Q), we have,

C(t∗1(Q), Q) =
C3R

Q
+KR +

C1(Q− αQ)2

2Q
+

C2α
2Q2

2Q

=
C3R

Q
+KR +

C1(1− α)2Q

2
+

C2α
2Q

2
,

where α = C1/(C1 + C2). Then the optimal Q is given by

Q∗ =

√
2C3R(C1 + C2)

C1C2

.

The corresponding t∗ is

t∗ =

√
2C1C3

RC2(C1 + C2)
.

4 Inventory replenishment with finite production rate

Sometimes, we cannot order a batch of products and receive them instantly. Instead,

we need to produce the products ourselves, or wait for the supplier to produce them for

us. We assume that we can start the production process whenever we want, but it takes

some time to complete. We also assume that we can store the products in our inventory

as soon as they are produced, without any delay in transportation. Let P be the constant

production rate, which is higher than R. In this case, the inventory level over time looks

like Figure 3.

We know the values of R, P , C1, C2, C3 and K, which are the demand rate, the

production rate, the holding cost per unit product per unit time, the shortage cost per
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图 3: Inventory level over time when we have a delay in producing or receiving products.

unit product per unit time, the fixed cost per order, and the unit cost per product,

respectively. Our goal is to find the optimal values of t1 and Q, which minimize the total

cost per unit time.

Question 6. What is the expression for the total cost per unit time, denoted by

C(t1, Q), as a function of t1 and Q?

Answer 6: First of all, Q = Rt, B = Rt1 = (P−R)(t2−t1), A = R(t−t3) = (P−R)(t3−t2).

Then we have t = Q/R, t2 = Pt1/(P −R), and t3 = t1 +R/Pt = t1 +Q/P .

The production or ordering cost per cycle C3 +KQ. The holding cost per cycle is

C1 ∗ A/2 ∗ (t − t2) = C1 ∗ (Q − Rt1 − RQ/P ) ∗ (Q/R − Pt1/(P − R))/2. The shortage

cost per cycle is C2 ∗B/2 ∗ t2 = C2 ∗ P ∗R ∗ t21/(P −R)/2. Therefore, the total cost per

unit time is

C(t1, Q) =
C3 +KQ

t
+

C1(Q−Rt1 −RQ/P )(Q/R− Pt1/(P −R))

2t
+

C2PRt21
2t(P −R)

=
C3R

Q
+KR +

C1(Q− βRt1)
2

2βQ
+

C2βR
2t21

2Q
,

where β = P/(P −R).

Now we minimize the total cost per unit time to determine when and by how much

to replenish inventory.

Question 7. For each fixed Q, what is the optimal value of t1, denoted by t∗1(Q), that

minimizes C(t1, Q)?
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Answer 7: For each Q, the optimal t1 is given by

t∗1(Q) =
C1Q

β(C1 + C2)R
.

Question 8. What are the optimal values of t1 and Q, denoted by t∗ and Q∗, that

minimize C(t1, Q)?

Answer 8: Substituting t∗1(Q) = C1Q
β(C1+C2)R

into C(t∗1(Q), Q), we have,

C(t∗1(Q), Q) =
C3R

Q
+KR +

C1(Q− αQ)2

2βQ
+

C2α
2Q

2Qβ

=
C3R

Q
+KR +

C1(1− α)2Q

2β
+

C2α
2Q

2β
,

where α = C1/(C1 + C2). Then the optimal Q is given by

Q∗ =

√
2C3R(C1 + C2)

C1C2

√
P

P −R
.

The corresponding t∗ is

t∗ =

√
2C1C3

RC2(C1 + C2)

√
P

P −R
.

5 Inventory management with stochastic demand

So far, we have assumed that the demand for the product is constant and known in

advance. However, in reality, the demand may vary from day to day, and we may not be

able to predict it accurately. In this case, we say that the demand is stochastic, meaning

that it is random and follows a certain probability distribution.

For simplicity, we only consider a single-period inventory problem, such as a newsven-

dor who sells newspapers every day. The newsvendor needs to decide how many news-

papers to order before knowing the actual demand for that day, and then sell them at a

fixed price per unit. At the end of the day, the newsvendor earns a profit of k dollars for

each newspaper sold, and incurs a cost of h dollars for each newspaper left unsold.

The newsvendor faces a trade-off between ordering too many newspapers and having

excess inventory, or ordering too few newspapers and missing potential sales. The goal is

to find the optimal order quantity, Q∗, that maximizes the expected profit per day.
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Let R be the random variable that represents the demand for newspapers per day.

Let P(r) be the probability that the demand is equal to r, where r = 0, 1, . . .. We assume

that
∑∞

r=0 P(r) = 1.

Question 9. What is the expected revenue if the order quantity is Q? (Hint: Use

the formula for the expected value of a function of a random variable: E[f(R)] =∑∞
r=0 f(r)P(r).)

When the demand is r, the revenue is kr−h(Q−r) if r ≤ Q and kQ if r > Q. Therefore,

the expected revenue is

Q∑
r=0

{kr − h(Q− r)}P(r) +
∞∑

r=Q+1

kQP(r)

=

Q∑
r=0

{kr − h(Q− r)}P(r) +
∞∑

r=Q+1

{k(Q− r)}P(r) +
∞∑

r=Q+1

krP(r)

= kE(R)−
∞∑

r=Q+1

{k(r −Q)}P(r)−
Q∑

r=0

{h(Q− r)}P(r).

Question 10. Define F (Q) =
∑Q

r=0 P(r). This is the probability that the demand is

less than or equal to Q. Show that the optimal order quantity, Q∗, can be determined by

finding the value of Q such that

F (Q− 1) <
k

k + h
≤ F (Q).

Let C(Q) be the difference between kE(R) and the expected revenue when the order

quantity is Q. That is,

C(Q) =
∞∑

r=Q+1

{k(r −Q)}P(r) +
Q∑

r=0

{h(Q− r)}P(r).

Then we have

C(Q+ 1)− C(Q) = (k + h)

[
F (Q)− k

k + h

]
.

This implies that when F (Q) < k
k+h

, C(Q + 1) < C(Q), while when F (Q) ≥ k
k+h

,

C(Q + 1) ≥ C(Q). Therefore, when F (Q∗ − 1) < k
k+h

≤ F (Q∗), C(Q∗) attains the

minimum of C(Q), or equivalently, the revenue attains the maximum.
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1 Background

The coronavirus disease 2019 (COVID-19) is a contagious disease caused by a par-

ticular virus. It has caused a global epidemic (疫情) up to the present year of 2022.

Besides studying the biological attributes of the virus, it is also critical to understand the

evolution of the epidemic in the population. There exists several classical models that

describe how certain types of diseases spread among people. Such epidemiological models

are useful tools to predict the future development of an epidemic.

2 A two-segment model

Figure 1: Division of population.

Assume there is an epidemic progressing in a population consisting of a fixed number

of N people. Suppose once an individual gets the disease, he/she becomes infectious (有

传染性的), and will not recover from the disease in the foreseeable future. However, the

disease is not vital, meaning no people will die from it. In light of such facts, we divide

the population into two disjoint (不相交的) groups: the susceptibles (待感染者) and the

infected (已感染者). See Figure 1 for an illustration of the division. We keep track of the

number of individuals from each group at the end of each day. In particular, at the end
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of day t (t = 1, 2, . . . ), the susceptible group includes St people, and the infected group

includes It people. We also use S0 and I0 to denote the number from the two groups at

the beginning of day 1. We assume 0 < I0 < N . It can be seen easily that St + It = N

for all t = 0, 1, 2, . . . , where the population N is a constant that does not depend on t.

Now assume on day t ≥ 1, every susceptible individual has the same probability

βIt−1/N of getting infected due to contacts with people from the infected group. Here

β ∈ (0, 1) is a constant. Also, the event whether a susceptible individual gets infected is

independent (独立于) of the event whether any other susceptible individual gets infected.

*On the average sense, the number of newly infected people on day t is counted

as βIt−1St−1/N . Figure 2 below demonstrates the transition of the two groups. Thus we

have the following recursive formula (递推式) for It:

It − It−1 = βIt−1St−1/N, t = 1, 2, . . . . (1)

Figure 2: Transition of two groups.

As it turns out, it is more convenient to record the proportions of the susceptibles

and the infected to the whole population, instead of recording their actual headcount. To

this end, we define the two proportions: st = St/N , it = It/N . In order to understand

how it and st changes day by day, we walk through some basic analysis.

Question 1 (10 pts): Using your knowledge of probability (概率知识), prove the sen-

tence marked with star. That is, prove that the average/expected number (平均数或者

期望数) of newly infected people on day t is βIt−1St−1/N .

Answer 1: For each susceptible individual, whether he/she gets infected on day t is a

Bernoulli random variable with success probability βIt−1/N . The total number of newly

infected people is then a binomial random variable with St−1 trials and success probability

βIt−1/N . Its expectation is βIt−1St−1/N .

Question 2 (10 pts): Write out two recursive formulas similar to (1), one for it and

one for st. The quantities It−1, It, St−1, St should disappear in both formulas. Further

show that, {it} is an non-decreasing sequence and {st} is a non-increasing sequence.
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Answer 2: The two recursive formulas are:

it − it−1 = βit−1st−1

st − st−1 = −βit−1st−1.

Since we start from i0 ∈ (0, 1), we are guaranteed that it − it−1 ≥ 0 and st − st−1 ≤ 0 for

all t.

Question 3 (10 pts): Suppose the epidemic starts with i0 ∈ (0, 1/2). We count the

number of days until it exceeds 1− i0. Let t
∗ be the largest t such that it ≤ 1− i0. Prove

that

t∗ ≤ 1− 2i0
i0(1− i0)β

.

(Hint: First try to find a lower bound (下界) for the daily increase it − it−1, then find an

upper bound (上界) for the total increase up to day t∗.)

Answer 3: The daily increase of {it} is βit−1st−1 = βit−1(1− it−1), which is a quadratic

function of it−1. When it−1 ∈ [i0, 1− i0], we have that βit−1(1− it−1) ≥ βi0(1− i0). This

holds true for the first t∗ days. The total increment is then ≥ t∗βi0(1− i0). On the other

hand, the total increment is ≤ 1− i0 − i0 = 1− 2i0 by the definition of t∗. We must then

have t∗βi0(1− i0) ≤ 1− 2i0, which leads to the conclusion.

Question 4 (10 pts): Prove by contradiction (反证法) that, as t grows larger and larger,

it gets arbitrarily close to 1. The meaning of this result is, all people will eventually get

infected. You can start the proof by assuming it ≤ 1 − ϵ0 for all t with some small

constant ϵ0 > 0. A contradiction can be reached by an argument similar to Question 3.

Answer 4: Assume it ≤ 1− ϵ0 for all t with some constant ϵ0 > 0. Then it ∈ [i0, 1− ϵ0]

for all t. The daily increase βit−1(1− it−1) is then ≥ min{βi0(1− i0), βϵ0(1− ϵ0)} := c0.

Since the total increment should be ≤ 1 − ϵ0 − i0, this amount of increase can last no

more than (1− ϵ0 − i0)/c0 days. This leads to a contradiction to the fact that it ≤ 1− ϵ0

for all large enough t.

3 Model with recovery

The model in the previous section ignores the fact that infected people may recover

from the disease. Now assume that an infected individual may recover from the disease,

and once recovered, he/she is no longer infectious. However, a recovered individual may

later catch the disease again. For each infected individual, we assume that he/she recovers
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with probability α ∈ (0, 1) independently on any given day. A more detailed explanation

is the following: if John belongs to the infected group at the beginning of day t, then he

recovers with probability α on day t. If he does recover, then he becomes a member of

the susceptible group at the end of day t. If he does not recover on day t, then he still

belongs to the infected group, and recovers with probability α on day t + 1. The events

whether he recovers on any particular day are mutually independent. On average, the

proportion (to the whole population) of newly recovered people on day t is just αit−1.

The transition of the two groups is illustrated in Figure 3.

We then have the recursive formulas

it − it−1 = βit−1st−1 − αit−1 (2)

st − st−1 = −βit−1st−1 + αit−1. (3)

As usual, we assume i0 ∈ (0, 1).

Figure 3: Transition of two groups with recovery.

One critical parameter in this system is R0 = β/α, which basically represents how

contagious the disease is. The future progression of the epidemic largely depends on

whether R0 < 1 or R0 > 1.

Question 5 (10 pts): Suppose R0 < 1. Explain why {it} is a non-increasing sequence.

Answer 5: Since β < α (from R0 < 1) and st−1 ≤ 1, it must be that βst−1 − α < 0 for

all t. From (2), we know that it ≤ it−1.

Question 6 (10 pts): Suppose R0 > 1. Assume that the two variables it and st approach

their respective (各自的) steady states (平稳状态) i∗ and s∗ after a long enough period.

In plain words, the steady states i∗ and s∗ are two constants such that it ≈ i∗ and st ≈ s∗

for all t ≥ T (T is some big integer). If we know i∗ ∈ (0, 1), try to find the values of i∗

and s∗.

Answer 6: For all t ≥ T , we have it ≈ i∗, st ≈ s∗. Plugging these into (2) and (3),

we get 0 = βi∗s∗ − αi∗. Since i∗ > 0, we have s∗ = α/β = 1/R0. The complement is

i∗ = 1− 1/R0.
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A more popular understanding of R0 is the average number of people who will get

the disease directly from the first infected individual. Now suppose there is a large

population of N people who are completely healthy (susceptible). At the beginning of

day 1, there comes from outside an extra “patient zero”, who is infected by the disease.

By our previous assumption, every susceptible individual has probability β/N of getting

infected directly by “patient zero” on a given day, as long as “patient zero” has not

recovered. Suppose N is so large that, for a long long time, the infected only account for

an infinitesimal (极微小的) faction of the population. In other words, you can admit that

N = S0 ≈ S1 ≈ S2 ≈ . . . . Also remember that “patient zero” recovers with probability

α on each day. We count the total number of people infected directly by “patient zero”

until he/she recovers.

Question 7 (10 pts): Show that the total average number of people who get infected

directly from “patient zero” is approximately R0.

Answer 7: On day t, “patient zero” is still infected with probability (1 − α)t−1. Then

the average number of people infected by “patient zero” is

β/N · St−1 · (1− α)t−1 ≈ β/N ·N · (1− α)t−1 = β(1− α)t−1.

The cumulative average number is then approximately

∞∑
t=1

β(1− α)t−1 = β/α = R0.

4 A three-segment model

Consider another scenario where people recovered from the disease get lifetime im-

munity. That is to say, recovered people will never get the disease again. They are not

infectious either. We then need to divide the population into three disjoint groups: the

susceptibles, the infected, and the recovered (已康复者). The proportion of people from

each group are denoted st, it and rt respectively. Remember st + it + rt = 1 for all t.

Figure 4 describes the transition between groups in this scenario.

Based on previous assumptions, we have the recursive formulas

it − it−1 = βit−1st−1 − αit−1 (4)

st − st−1 = −βit−1st−1 (5)

rt − rt−1 = αit−1. (6)
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Figure 4: Transition between three groups.

We assume i0 > 0, r0 = 0. We define the parameter R0 = β/α exactly the same as before,

and assume R0 > 1.

Question 8 (10 pts): Assume for the moment that the approximation (b − a)/a ≈
ln(b/a) holds for a > 0, b > 0. Use this approximation and recursive formulas (4)–(6) to

prove st ≈ s0e
−R0rt .

Answer 8: Combining (5) and (6), we get

st − st−1

st−1

= −R0(rt − rt−1).

By the given approximation, we have

ln st − ln st−1 ≈ −R0(rt − rt−1).

Taking the sum, we get

ln st − ln s0 =
t∑

τ=1

(ln sτ − ln sτ−1) ≈ −R0

t∑
τ=1

(rτ − rτ−1) = −R0(rt − r0) = −R0rt.

This leads to the desired result.

Question 9 (10 pts): Recall the definition of steady states in Question 6. Assume that

the three variables (it, st, rt) approach their respective steady states (i∗, s∗, r∗) after a long

enough period. Use the result of Question 8 and the three recursive formulas (4)–(6) to

prove: i∗ = 0, s∗ = 1− r∗, and r∗ satisfies the approximate equation

1− r∗ − s0e
−R0r∗ ≈ 0.

Answer 9: Plugging the steady states into (6), we get 0 = αi∗. Thus i∗ = 0, and

s∗ = 1 − r∗. Also from the result of Question 8, we have s∗ ≈ s0e
−R0r∗ . Therefore

1− r∗ ≈ s0e
−R0r∗
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5 A four-segment model

Consider the same scenario as Section 4, except for an additional feature. Let us

assume that the disease has an incubation period (潜伏期). The population is divided into

four disjoint groups: the susceptibles, the infected, the recovered, and the exposed (潜伏

者). The proportion of people from each group are denoted st, it, rt and et respectively.

Once a susceptible individual gets the disease, he/she becomes one of the exposed at

first. The exposed people are not infectious. When the incubation period ends for

an exposed individual, he/she becomes one of the infected, who are infectious. Each

exposed individual has probability δ ∈ (0, 1) of becoming infected on any given day, so

that the average proportion of newly infected people on day t is δet−1. See Figure 5 for

a description of such transition.

Figure 5: Transition between four groups.

Question 10 (10 pts): Write out the four recursive formulas for st, it, rt and et.

Answer 10: The formulas are

st − st−1 = −βit−1st−1

it − it−1 = δet−1 − αit−1

rt − rt−1 = αit−1

et − et−1 = βit−1st−1 − δet−1.
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